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ABSTILkCT

In this report, the decoding problem of multi-level block modulation codes

is investigated. It consists of two parts. In the first part, the hardware design

of soft-decision "v'lterbi decoder for some short length 8-PSK block modulation

codes is presented. An effective way to reduce the hardware complexity of the

decoder by reducing the branch metric and path metric, using a non-uniform

floating-point to integer mapping scheme, is proposed and discussed. The sim-

ulation results of the design are presented. In the second part, the multi-stage

decoding (MSD) of multi-level modulation codes is investigated. The cases of

soft-decision and hard-decision MSD are considered and their performance are

evaluated for several codes of different lengths and different minimum squared

Euclidean distances. It is shown that the soft-decision MSD reduces the de-

coding complexity drastically and it is suboptimum. The hard-decision MSD

further simplifies the decoding while still mantaius a reasonable coding gain over

the uncoded system, if the component codes are chosen properly. Finally, some

basic 3-level 8-PSK modulation codes using BCH codes as component codes

are constructed and their coding gains are found for hard-decision multi-stage

decoding.
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CHAPTER 1

INTRODUCTION

Conventionally in digital communication, channel coding is

designed and performed separately from modulation. In the cases

of both block codes and convolutional codes, error control is

achieved by replacing k-tuple message with a well-structured n-

tuple codeword, where n • k. Transmission of these (n-k) redundant

symbols requires either a bandwidth expansion or a reduction of

data rate. Either case results in lowering the information rate per

channel bandwidth, known as the bandwidth efficiency. This type

of channel coding is suitable for power limited channels without

bandwidth constraints, where bandwidth efficiency is traded for

increased power efficiency and coding gain or reliability is

achieved at the expense of bandwidth expansion or reduction of

data rate. However, for channels with bandwidth constraint such

as voiceband telephone terrestrial microwave channels and mobile

and high speed satellite channels, bandwidth is a very precious

resource and bandwidth expansion is either not desirable or

possible. In the past, therefore, coding has never been popular for

bandlimited channel.

Recently, however, there has been increased interest in some

type of combined modulation and coding scheme known as coded-

modulation or bandwidth efficient coding, that achieves coding gain



with little or no bandwidth expansion. At first, it may seem that

this statement violates some basic power-bandwidth-error

probability trade-off principle. However, there is still a trade-off

at work; coded modulation achieves coding gain at the expense of

increased decoder complexity. In 1982, Ungerbock showed that by

combining coding and modulation properly, significant coding gain

over uncoded modulation systems can be achieved without

compromising bandwidth efficiency. Ever since a great deal of

research effort has been expended in bandwidth efficient coded

modulation for achieving reliable communication on bandlimited

channels.

The basic idea behind the coded-modulation is as follows.

The error performance of an uncoded non-orthogonal M-ary

modulation (such as PSK or QAM) depends largely on the distance

between the closest pair of signal points and is upper-bounded by

0.5 Ne erfc(dmin/2qNo)

for a AWGN channel, where Ne is the average number of nearest

neighbours per signal point, drain is minimum distance between the

signal points in the two dimensional Euclidean plane and No/2 is

the power spectral density of noise. The minimum distance is

determined by the average transmitter power and the number and

position of the signal points. For a constant average power, the

minimum distance between points decreases as the number of

points increases. Therefore, assuming a constant channel symbol

2



rate and constant average power, the error performance degrades

for systems that attempt to increase the transmission bit rate or

bandwidth-efficiency by increasing the size of the symbol set.

The basic concept of coded modulation is to encode the

information bits onto an expanded signal alphabet (relative to that

needed for uncoded modulation). This signal set expansion provides

the needed redundancy for error control without sacrificing

bandwidth efficiency. The expanded signal set does result in a

reduced distance between adjacent symbol points for a given

average power. However, coding is used to introduce a certain

dependency between successive signal points, such that only

certain pattern (or sequences) of signal points are permitted. Thus

the reduced distance between adjacent symbol points no longer

determines the error performance. Instead, the minimum Euclidean

distance between the members of the set of allowable symbol

sequences (codeword in signal space) determines the error

performance.

1.1 TYPES OF MODULATION CODES, PERFORMANCE MEASURE

AND OPTIMUM DECODING STRATEGY

In a coded modulation error control system, information

sequences are coded into signal sequences over a certain

modulation signal set (e. g. an 8-PSK signal set). These signal

3



sequences form a modulation code. Based on the code structure,

coded modulations are classified into two categories: trellis

coded-modulations (TCM) and block coded-modulations (BCM). In a

trellis coded modulation, an information sequence is encoded by a

convolutional code and mapped onto a modulation signal set by a

bit-to-symbol mapper. The resultant modulation code has a trellis

structure and hence can be decoded by the Viterbi decoding

algorithm. For this reason, we call this modulation code a trellis

modulation code. In block modulation code, a message of k bits is

encoded by block component codes of length n and mapped onto a

modulation signal set by a bit-to-signal mapper. The resultant

code is called a block modulation code. If the block component

codes are chosen properly, the resultant modulation code has a

trellis structure and hence can be decoded by the Viterbi decoding

algorithm.

In order to achieve good error performance, modulation codes

are generally decoded using soft-decision decoding based on an

Euclidean distance measure. The coding gain of a modulation code

is largely determined by its minimum squared Euclidean distance.

Let s be a point (X(s), Y(s)) in the two dimensional Euclidean

space R. Let s and s° be two points in R. The squared Euclidean

distance between s and s', denoted d(s,s'), is defined as follows:

d(s,s') = (X(s)-X(s')) 2 . (Y(s)-Y(s'))2



Let v - (Sl, s2, ....... ,Sn) and v'- (Sl', s2', ....... ,Sn') be two n-

tuples over R. The squared Euclidean distance between v and v',

denoted [v-v'l 2 , is defined as follows:

n

Iv-v'l 2" ,T_,(X(si) - X(si'))2 + (Y(si) - Y(si')) 2
i,,1

Let C be a modulation code of length n with signals from a two-

dimensional modulation signal set S. The minimum squared

Euclidean (MSE) distance of C, denoted D[C], is defined as follows:

D[C] = min{ I v-v' 12 "v, v' in C and v _ v'}

The effective rate of C, denoted R[C], is given by

R[C] = 1/2n log2 ICI

which is the average number of information bits transmitted by C

per dimension (of the signal set). The total number of information

bits in one codeword of C is called the dimension of C.

Assume that the channel is an additive white Gaussian noise

(AWGN) channel and all the code sequences of a modulation code are

equally likely to be transmitted. Let r = ((xl,Yl), (x2,Y2,), .......

(xn,Yn,)) be the output sequences of the demodulator. Then the

squared Euclidean distance between r and a code sequence v =

(Sl ,s2, ...... sn) in C is

N

Ir-vl 2= T__,(xi- X(si)) 2 + (yi- Y(si)) 2
i=1
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For maximum likelihood decoding, the received sequence r is

decoded into a code sequence vi if

Ir-vi 12 < Ir-v/I 2

for all I _ i. To perform soft-decision maximum likelihood

decoding, it is desirable for a modulation code to have a trellis

structure so that the Viterbi decoding algorithm can be applied to

reduce the number of computations and the decoder complexity.

Consider a coded modulation system using a modulation code

C with minimum squared Euclidean distance D[C] and effective rate

R[C]. For the purpose of performance comparison, we choose a

proper reference system (coded or uncoded) using a modulation code

Cs with MSE distance D[Cs] and effective rate R[Cs]. Then, the

asymptotic coding gain (ACG) of the coded system C over the

reference system Cs (assuming same average power for both the

system) is given by

• R[C].D[C]
10 _ogloR[__

The asymptotic coding gain is used as a simple measure of the

performance of a coded modulation system.

This research project is set up to investigate the decoding

problem of multi-level block modulation codes. The design of

optimum decoder for some short length modulation codes with



simple trellis structure is presented and alternate and practical

decoding schemes for more complex codes are investigated.

In Chapter 2, multi-level construction method for multi-level

code is reviewed. In chapter 3, hardware design of Viterbi

decoders for two short length 8-PSK block modulation codes is

described. The multi-stage decoding of multi-level codes is

investigated in chapter 4. Finally, chapter 5 is devoted to

concluding remarks.
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CHAPTER 2

MULTI-LEVEL CONSTRUCTION OF MPSK BLOCK

MODULATION CODE

In this chapter, we describe a powerful technique for

constructing M-ary PSK block modulation code with arbitrary large

MSE distance, known as the multi-level construction.

2.1 CODE CONSTRUCTION

The construction steps are as follows:

1. Selection of a signal set: A set of 21signal points is chosen.

2. Signal labeling by set partitioning: Each signal point is

labeled by a string of /bits. Such labeling is said to have / levels.

These label strings must be designed to provide the resultant

modulation code with the largest possible minimum squared

Euclidean distance when bits-to-signal mapping is performed.

Labeling is generally done by a set partitioning process.

3. Selection of component codes: The component codes may be

binary or nonbinary, block or trellis.

4. Code construction and bits-to-signal mapping:

Component codes are combined to form a label. Then, the label is

mapped into a signal point. This mapping results in a multi-level

modulation code.

8



If the number of component codes is equal to the number of

labeling levels (/), the resultant modulation code is called a basic

multi-level modulation code.

We use an example to demonstrate the construction.

1 Selection of a signal set: We consider 8-PSK signal set (or

constellation) as shown in figure 2.1, where each signal point is

labeled with an integer s from the set S = {0,1,2,3,4,5,6,7}. The

squared Euclidean distance between two signal points s and s' in

the 8-PSK signal set S is given by

d(s,s') = 4 sin2(_)

2. Signal labeling by set partitioning: Binary digits are

assigned to each point in the 8-PSK signal space according to

Ungerbock's set partitioning scheme.

Let X be the subset of S. The intra-set distance of X, denoted

d[X], is given by

d[X] = min {d(x, x') : x, x' in X}

Let X and Y be two subsets of S. The set separation between X and

Y, denoted d[X, Y], is defined as follows:

d[X, Y] = min {d(x, y) : x in X and y in Y}

9
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Fig. 2.1 8-PSK signal set
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we form a chain of partitions of the signal set S with

increasing number of subsets, increasing intra-set distances and

set separations as shown in figure 2.2. The partition process

results in 3 partitions of S with with increasing intra-set

distances. At each partitioning stage, a subset of S is labeled by a

binary sequence, and at the end of partitioning process, each signal

point is labeled with a binary string of 3 digits.

The first partition consists of two disjoint subsets which are

labeled by 0 and 1. The second partition consists of four disjoint

subsets which are labeled by 00, 01, 10 and 11 respectively. The

third partition consists of 8 disjoint subsets, each consisting of

only one signal point, which are labeled by 8 unique 3-tuples. The

partition is carried out in such a way, as the partition level

increasing, the intra-set distance (the minimum squared Euclidean

distance among signal points) of a set in a partition increases. For

the 8-PSK case, the intra-set distances at 3 partition levels are:

0.586 , 2 , 4

The label strings formed from the above partitioning process have

the following important properties:

(1) Two signal points with labels different at the first position

are at a squared Euclidean distance at least dl = 0.586 apart.

11
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Fig. 2.2 Signal labeling and 8-PSK/QPSK/BPSK partitioning chain

12



(2) Two signal points with labels identical at the first position but

different at the second position are separated by a squared

Euclidean distance at least d2 - 2 apart.

(3) Two signal points with labels identical at the first two

positions but different at the last position are at a squared

Euclidean distance at least d3 -4 apart.

The monotonically increasing property of the distances dl, d2

and d3 is one of the keys to the construction of bandwidth efficient

modulation codes. These distances are called the distance

parameters of the signal label strings.

From figure 2.2, we see that each subset in the first partition

is a QPSK signal set and each subset in the second partition is a

BPSK signal set.

Each signal point s in S is labeled by a string of 3-bits. Let

abc be the label for signal point s in S. Then a, b and c are l st,2nd

and 3rd levels respectively. Let _ be the mapping from binary

labeling to a point in signal space, then

i_(abc)=s

The 8-signal points and their corresponding labels are shown

in figure 2.3. The label abc for s in S turns out to be the binary

representation of integer s. Each integer s in S can be expressed in

the following polynomial form

13
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Fig. 2.3 8-PSK signal points and their labels

14



s=b0 +bl. 2+ b2.22

where bj = 0 or 1 for 0 _; i _; 2. The 3-tuples (b0, bl, b2 ) is the

binary representation of integer s.

Each prefix of a label represents a subset of signal points in

S. For example, prefix a represents 4 signal points in a QPSK signal

constellation, prefix ab represents 2 signal points in a BPSK signal

constellation and prefix abc represents a single signal point in

signal set S. Let Q(a) denote the set of signal points whose labels

have a as the prefix. Then,

Q(a)={ s: s is a signal point in QPSK signal constellation}

Let Q(ab) denote the set of signal points whose labels have ab as

the prefix. Then,

Q(ab)={s: s is a signal point in BPSK signal constellation}

Let dl,d2 and d3 be the intra-set squared Euclidean distances

of S, Q(a) and Q(ab) respectively. For the 8-PSK signal

constellation d1=0.586, d2=2, d3=4.

3. Selection of component codes: For the construction of a

basic multi-level code, the number of component codes required is

equal to number of levels in the labeling of signal points. For

example, in 8-PSK signal set each signal point is labeled with 3

bits. Hence, 3 binary component codes are required to construct an

8-PSK block modulation code. All the component codes are chosen

15



to have equal length and proper minimum hamming distances. For 1

< i _; 3, let Ci be a binary ( n, ki ) code with minimum hamming

distances ai.

4. Code construction and bits-to-signal mapping: Let

a=(al a2 a3 ............... an)

b=(bl b2 b3 ............... bn)

¢=(Cl c2 c3 ............... Cn)

be three codewords in C1, C2 and C3 respectively.

following sequences,

We form the

a*b*c =(alblCl, a2b2c2, ............. anbncn)

For 1 _; i _<n, we take ai bi ci as the label of a signal point in the 8-

PSK signal set. Then,

p.(a*b*c) =(p.(al bl Cl ), ........... ,,u(an bncn))

is a sequences of 8-PSK signals. The set

C={l_(a*b*c):a is inCl,b is inC2 and¢ is in C3}

= C1 * C2 * C3

is a 3-level block 8-PSK modulation code. The minimum squared

Euclidean distance of a basic 3-level modulation code is [7]

D[C] = min{dlo_l, d2o_2 ,d3o_3}

16



For a 3-level 8-PSK block modulation code,

O[C] = mini0.58631,252,433}

2.2 ENCODING AND DECODING

Encoding of a 3-level basic 8-PSK modulation code C of length

n constructed based on the above method can be done as follows. A

message u of

k =_kbi
i=1

bits (called a segment) is divided into 3 sub-blocks, the i-th sub-

block consists of kbi bits. For 1 _; i _; 3, the i-th sub-block is

encoded into a code vector vi in the binary component code Ci of C.

Then

14(v) = I_(Vl " v2 * v3)

is a codeword in C for the message segment u. The components of

I_(V) are then mapped into points in a 2-dimensional 8-PSK signal

set and transmitted. Hence, each message segment of k bits is

encoded into a sequence of n 8-PSK signals.

A soft-decision decoding algorithm for the above 8-PSK codes

can be devised as follows. For any element s in the group S = { 0,1,.

7}, let X(s) and Y(s) be defined as

17



X(s) - COS(xS/4), Y(S) - sin(xs/4)

For 1 _; j _; n, let (xi, Yi) be the normalized output of a coherent

demodulator for the j-th symbol of a received frame. The received

frame is then represented by the following 2n-tuple: • = ((xl,Yl),

(x2,Y2,), ........ (xn,Yn)). For the received frame • and a codeword

v = (Sl, s2,. • • ,Sn) in C, let Iz,vl2 be defined as follows:

n

Iz,vl2= ,T_, (xi- X(si)) 2 + (yi- Y(si)) 2
i=1

Assume that the channel is an AWGN channel. Suppose every

codeword of C is transmitted with the same probability. Then we

have the following decoding rule: For a received frame z, choose a

codeword v in C with minimum lz,vJ2. The segment u corresponding

to v is then the decoded segment. This decoding rule achieves

maximum likelihood decoding for C over an AWGN.

18



CHAPTER 3

DESIGN AND SIMULATION OF OPTIMUM DECODER FOR

SOME BLOCK MODULATION CODES

In this chapter, the design of Viterbi decoder using parallel

architecture for two short length block modulation codes is

presented. These codes are suitable as inner code in high speed

concatenated coded-modulation scheme. Since these codes have

trellis diagram of reasonable complexity, high speed Viterbi

decoder can be built on VLSi chip. The designs have been simulated

for different quantization-levels and branch metric computation

schemes and the actual coding gain over uncoded QPSK has been

found. Also, the overview of a possible VLSI chip structure of the

decoder for four-state code is given and various I/0 pins are

discussed.

3.1 DESCRIPTION OF THE CODES

Code 1: The three binary component codes C1, C2 and C3 are as

follows: (1) C1 is the simple binary (8,1) repeatition code; (2) C2 is

the binary (8,7) code with all the even weight 8-tuples; (3) C3 is

the (8,8) binary code which consists of all binary 8-tuples. The

minimum Hamming distances of C1, C2 and C3 are a1=8, _2=2 and

o_3=1 respectively. By using the multi-level construction method

(described in chapter two), these three binary components codes

19



result in a linear multi-level code, C= C1 • C2 * C3 over the 8-PSK

signal set with minimum squared Euclidean distance D[C]-4,

dimension K-16, length-8 and effective rate R[C]-I. This code

provides 3 db asymptotic coding gain over the uncoded QPSK

modulation without bandwidth expansion. It has a 4-state trellis

diagram, as shown in figure 3.1, which consists of two identical

parallel 2-state trellis sub-diagrams without cross connections

between them. This structure suggests that the decoding of the

code can be done with two 2-state Viterbi decoders to process the

two trellis sub-diagrams in parallel. This implementation not only

reduces the decoding complexity but also speeds up the decoding

process. The code is 450 rotationally invariant allowing fast

rysynchronization on non-coherent channel [7].

_: The three binary component codes C1, C2 and C3 are as

follows: (1) C1 is first-order Reed-Muller code of length 16 ((16,5)

code) represented by RM(4,1); (2) C2 is the binary (16,15) code with

all the even weight 16-tuples represented by P16; (3) C3 is the

(16,16) binary code which consists of all binary 16-tuples and is

represented by V16. The minimum Hamming distances of C1, C2 and

C3 are c31=8, _2=2 and _3=1 respectively. Hence, the basic multi-

level modulation code of length 16 constructed by these component

codes is given by

C = RM(4,1) * P16 * V16

2O



O

Fig. 3.1 Trellis diagram for 8-PSK modulation code1
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This code has minimum squared Euclidean distance D[C]=4,

dimension K=36 and effective rate R[C]= 9/8 (greater than one).

This code provides 3.52 db asymptotic coding gain over the uncoded

QPSK modulation with less bandwidth (a bandwidth reduction).

However, It has 16-state trellis diagram, which makes the decoder

more complicated.

As far as decoding is concerned, the advantages of BCM codes

over TCM codes are as follows. (1) In case of BCM codes, the trellis

terminates after certain number of sections. Hence there is no

ambiguity about final survivor. In case of TCM codes, the decoder

has to choose an appropriate survivor from certain number of

survivors (one at each state) to make a decoding decision. This

implies some additional overhead on the decoder. (2) Since in case

of BCM codes, the entire codeword can be outputted in parallel,

decoding delay is less for short length codes. In case of TCM codes,

the decoding delay is 5 or more times the constraint length.

3.2 MODIFICATION OF TRELLIS DIAGRAM

For the simplicity of decoder (for high throughput) and the

associated circuit, the decoder should be designed to perform

identical operations in each and every section of the trellis. Hence,

it is desirable to have a trellis with the same inter-connection

structure in all the sections. Thus, the trellis diagram (figure 3.1)
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of the code needs to be modified. Note that the initial and final

sections of the trellis are different from the rest of the

repeatitive sections. Initial and final sections have some states

and branches missing. The structure of the initial and the final

sections of the trellis is modified in a way that it has the same

form as th periodic sections of the trellis. The resulting trellis

diagram (TD) will be referred to as the modified trellis diagram

(MTD).

The MTD is obtained from the TD by introducing some

additional states (or nodes) and branches in the initial and final

sections of the trellis such that the inter-connection structure of

the entire 8-sections trellis in the MTD has exactly the same

periodic structure (figure 3.2). Note that since the initial and final

states are always the zero states, the encoder can never be in the

additional states introduced in the MTD. Therefore, these

additional states are invalid states while the states present in the

TD are valid states. Similarly, the additional branches introduced

in the MTD are invalid branches while the branches present in the

TD are valid branches. The decoder can never decode to a path

which contains an invalid state or an invalid branch. There must be

a mechanism built into the decoder to accomplish it.

We need to modify the initialization step of Viterbi

algorithm. That is, initialize the metric value of the valid state at

stage 0 to zero and the metric value of the invalid state at stage 0
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Modified Upper Trellis

Modified Lower Trellis

Invalid branches have been shown by dotted lines and invalid

states have been shown by bold circles.

Figure 3.2 Modified Trellis
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to bmax + e, where bmax is the largest value of the branch metric

and • • O. The idea is to make sure that when a path originating

from the invalid state and the one originating from the valid state

are compared at the next stage i-1, the one originating from the

valid state is always the survivor. This can be shown as follows:

Let us consider the metric values of various paths converging

to state 1 at stage i,1. Let pl be the metric value of the path

originating from the valid state and converging to state 1 at stage

i-1. Hence, pl = initial metric value + branch metric value - 0 +

bml, where bin1 is the smaller of the branch metrics of two

parallel branches converging to this state from the valid state. Let

p2 be the metric value of the path originating from the invalid

state and converging to state 1 at stage i=1. Hence, p2 = initial

metric value ÷ branch metric value = bmax + e + bm2, where bin2 is

the smaller of the branch metrics of two parallel branches

converging to this state from the invalid state. Now, p2 - pl= bmax

+ e+ (bm2-bml). Since(bm2-bml)min = -bmax ande>O, p2-

pl • 0 or pl < p2 for all possible values of bm2 and bml. Hence, the

path originating from the valid state is the survivor.

Thus for the initialization of the metric values of the various

states as above, all invalid states and the branches introduced in

the initial section of the trellis are eliminated at stage i=1.

At stage i=7, the last section of the trellis, we simply

discard the invalid state, because we know that the final survivor
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is at other state (valid state). Thus introduction of invalid state

and branches in the final section of the trellis does not have any

affect on the decoder or decoding decision.

The above modification in the trellis diagram eliminates the

need of some additional hardware in decoder as well as some

overhead in decoding operations, which is otherwise required to

process the irregular sections (the initial and the final sections) of

the trellis by proper initialization of state or path metric

registers. Note that the above modification is significant for the

simplicity of implementation of decoder for a code with more

complex trellis.

3.3 DECODER DESIGN FOR THE FOUR-STATE CODE

As mentioned earlier, the entire decoder can be implemented

as two identical 2-state decoders, one to process the upper trellis

and other one to process the lower trellis. Hence, first the design

of the decoder to process the upper trellis is presented and the

design of the decoder to process the lower trellis will exactly be

the same except 'symbol-mapping circuit'(discussed later).

The complete decoder design can be discussed in the

following five parts:

1. Quantization and branch metric computation scheme
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2. Add-compare-select (ACS) circuit design

3. Information sequence updating and storage

4. Outputting the decoded word

5. Control circuit design

3.3.1 QUANTIZATION & BRANCH METRIC COMPUTATION

SCHEME

For a coded-modulation system, the appropriate metric is the

squared Euclidean distance between the received symbol and the

symbol in the trellis.

Let S = {0,1,2,3,4,5,6,7}. The elements in S represent the 8-

signal points in an 8-PSK signal constellation. For any i in S,

define

X(i) - cos(2xi/8), Y(i) = sin(2_i/8)

Let (X,Y) be the normalized output of a coherent 8-PSK

demodulator for a received symbol, where X and Y are in-phase and

quadrature components respectively. Then the ith branch metric is

M(i) = (X-X(i))2 + (Y-y(i))2

for 0 < i _; 7.
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Hence for each received symbol, 8 branch metrics are to be

computed.

We assume that the output of the demodulator, that is X and Y

components are given. Since the modulation is 8-PSK, quantization

with more than three bits was considered. Simulation results

(figure 3.10 (a)) showed that the four and five bits quantization

degrades the performance by 0.40 and 0.15 db respectively. Hence,

5-bits quantization was chosen for the design. The price of using

higher level quantization is a larger memory required to store the

branch metric (in case ROM look-up table is used for branch metric

computation). If the n-bits quantization is used, a ROM of capacity

8,22n words (length of the word determined by maximum value of

branch metric value) is required for branch metric computation.

X and Y components of the demodulator output are quantized

using five-bit (32-levels) uniform quantizer. The range of

quantization is determined by type of channel and signal-to-noise

ratio (SNR) and found as follows:

Suppose the operating SNR per symbol of the system is 9 db

and the channel is AWGN channel. Then,

10 Iogl0(S/N)=9 db where, S=signal power=(1/2)A2

N=noise power= s2

Hence, s=0.25 A
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Since four times s covers more than 96% of the cases, hence

we choose the range of quantization from -1.5A to 1.5A, where A is

noise-free received signal amplitude.

By quantizing X and Y components of the received symbol into

32 levels each, we divide the two-dimensional Euclidean plane into

1024 squares (rectangular quantization). The received 8-PSK

symbol will fall into one of these 1024 squares.

Note that the computation of one branch metric requires two

multiplications and one addition. Eight such computations are

required during each decoding cycle. Multiplication is time

consuming. We can speed-up the metrics computation if we

compute all the metrics in parallel using fast and parallel

multipliers. But then the hardware complexity is going to increase

tremendously. Hence, for higher speed of decoder as well as to

reduce the hardware complexity, ROM look-up table is used for

branch metric computation.

For each 8-PSK symbol, the 1024 squared Euclidean distances

corresponding to all possible received signal points in two

dimensional Euclidean plane have been computed. These distances

are floating point numbers between 0 and 9.5. For high throughput

and reasonable hardware complexity, it is necessary to design the

Viterbi decoder which handles only integer and performs only

integer arithmetic. Hence, we need to map these floating point
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numbers into integer without allowing much degradation in

performance.

One straight forward way to do this mapping is multiply each

floating point number by some appropriate integer and then take the

nearest integer value. Simulation showed that if we multiply each

floating point number by 5 and then take the nearest integer value,

this results in negligible degradation in performance. Essentially,

by doing so we are able to distinguish between the distance

metrics x and x + 0.2, where 0 _; x < 9.5.

The problem with the above uniform mapping scheme is that

it leads to increase in the branch metric range and hence the

number of bits required to represent the branch and path metric is

increased. Consequently, more hardware is required for all the

units ( adders, comparators, multiplexers etc.) in the ACS part of

the circuit. For example, for high speed decoder, carry look-ahead

adders are used, hardware requirement of which increases more

than in proportion for increase in each additional bit. Using above

mentioned mapping scheme, the maximum value of branch metric

came out to be 47, which requires 6 bits to represent a branch

metric and 7 bits to represent a path metric.

Since reducing the branch and path metrics range even by one

bit means a considerable savings in hardware, the following non-

uniform mapping of floating point branch metric value to integer

value is proposed:
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The branch metrics with lower values, which are more likely

to be the survivor are mapped with smaller range (essentially finer

distinction) and those metrics with larger values are mapped with

bigger range. The idea is, since the branch metrics with larger

values are unlikely to be the survivor, we do not need to make fine

distinction between two larger values of branch metrics.

We can divide the entire metric values (range 0-9.5) into two

groups: the first group contains lower metric values in the range 0-

4 and the second group consists of metrics with the values in the

range 4-9.5. The floating point metric value in the first group is

multiplied by 5 and then rounded off to the nearest integer value.

The floating point metric value in the second group is assigned the

next available integer with an interval of 0.5. Table 3.1 illustrates

the non-uniform mapping.

The mathematical formulation for the above non-uniform

mapping scheme can be given as follows:

Let F be the function that maps the floating point branch

metric value to an integer value. Then F is given by,

F(x) = i, i*0.2 _; x _<(i+1)*0.2, 0 < i <19

= 20 + i, 4+i*0.5 _ x _; 4+(i+1)*0.5, 0 < i _;11
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Table 3.1 Non-uniform mapping of branch metric values

Floatino point value lnteoer value

0.0-0.2 0

0.2-0.4 1

0.4-0.6 2

• • . • • • • . •

3.6-3.8 1 8

3.8-4.0 19

4.0-4.5 20

4.5-5.0 21

• . . • • • t • • =

9.0-9.5 31

Thus, we limit the branch metric range to 31 and hence only 5

bits are required to represent the branch metric value. Similarly,

path metric registers and all other related units for ACS operation

now need 6 bits instead of 7. Two schemes were simulated. The

non-uniform mapping scheme reduced the number of bits by one,

thus reducing the hardware and gave negligible performance

degradation over uniform mapping scheme.
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The 1024 squared Euclidean distances for a particular 8-PSK

signal point is stored in a ROM whose storage capacity is 1024

words, each word consis_ng of 5 bits. We need 8 such ROMs for 8

signal points. Hence, total storage requirement is 8"1024.5 bits =

40 kbits of ROM.

The scheme for branch metric computation has been shown in

figure 3.3. X and Y (5 bits each) are quantized value of in-phase and

quadrature components of demodulator output. They act as address

input to ROM's. A separate ROM is being used for each branch

metric. The output of each ROM is a 5-bit word which is branch

metric value and is passed to the ACS unit.

3.3.2 ACS CIRCUIT DESIGN

ACS circuit is the central unit of Viterbi decoder. It consists

of shift registers with (parallel loading facility), adders,

comparators (or substractors) and multiplexers.

From the trellis diagram (figure 3.1), note that at each time

unit, there are four paths converging to each state requiring four

adders (to generate the four path metrics in parallel) and three

comparators (to compare these four metrics in parallel) for that

state for parallel ACS operation. We show that if we divide the ACS

operations in two steps, we can save in hardware.
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In the first step, two branch metrics corresponding to pair of

parallel branches which originates from the same previous state

are compared and one with larger metric value is discarded. This

results in generation of only two new paths at each state at each

time unit. Hence, there remains only two path metrics to be

compared at each state which is done in the second step of ACS

operation. This scheme leads to reduction of one comparator and

two adders per state which is considerable saving in hardware.

Because of addition, comparison and multiplexing operations,

certain minimum time is required for ACS operations. Hence, proper

number of clock cycles must be allowed for entire ACS operations

and control circuit must take care of the delay required.

The detailed ACS circuit diagram has been shown in figure 3.4

(a) and 3.4 (b). R1 to R4 are 5 bit registers with parallel loading

facility which contain four branch metrics for upper trellis. C1 and

C2 are 5 bits comparators. MUX1 and MUX2 are 2 to 1 five bits

multiplexers. The circuit in figure 3.4 (a) executes the first step

of ACS operation. It compares the branch metrics of the parallel

branches in the trellis and selects the one with the lower metric

value.

Simulation results showed that if we limit the branch metric

value to 5 bits (maximum 31), the maximum path metric value at

BER 10 -5 and 10 6 is 50 and does not exceed 52 at higher BER.
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Hence, path metric registers (S1,S2) should be 6 bits registers and

associated adders, comparators and multiplexers all must be 6 bits

units. Based on simulation results, we can safely assume that at

acceptable BER, there will be no overflow in the ACS section of the

decoder. Note that the metric normalization circuit (to avoid

overflow) is not needed since the trellis terminates after eight

sections.

The circuit in figure 3.4 (b) executes the second step of ACS

operation, that is generation of new paths, comparison and

selection. $1 and $2 are 6 bits state or path metric registers for

state one and state two respectively. P1 to P4 are 6 bits adders.

For high speed decoder, carry look-ahead adders should be used. C3

and C4 are 6 bits comparators. MUX3, MUX4, MUX5 and MUX6 are 6

bits 2 to 1 multiplexers. The output of MUX5 and MUX6 (which

contain survivor path metrics after each ACS operation) are

connected to the input of path metric registers through MUX3 and

MUX4 respectively. The purpose of MUX3 and MUX4 is to select from

the initial value (0 or 32) of path metrics (in the beginning of

decoding of a new code word) or survivor path metric after each

ACS operation (rest of the time). Note that the comparators can be

replaced by fast substractors to further improve the speed of ACS

operation.
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The complete input connection for the path metric register

has been shown in figure 3.5. Whenever the count (which keeps

track of the number of section being processed in the trellis) is

000, that is the start of the decoding of a new code word. Hence,

multiplexer ( MUX3 and MUX4 ) selects initial value of path metrics

(0 and 32 corresponding to valid and invalid states respectively)
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3.3.3 INFORMATION SEQUENCE UPDATING AND STORAGE

The register exchange method is used for information

sequence updating and storage. The registers in which these

sequences are stored are interconnected in precisely the same

fashion as the ACS circuit. Each time a new branch is processed,

the registers are interchanged corresponding to which sequence

survives the comparison and a new symbol is added at one end of

each registers.

The complete circuit-diagram for this part of the decoder has

been shown in f'Kjure 3.6. H1 and H2 are two 24 bits path history

registers (for storage of 8 symbols each 3 bits long) with parallel

loading as well as serial shifting facility. MUXl and MUX2 are 2 to

1 24 bits multiplexers. Based on the results of comparators C3 and

C4 in the ACS section, information sequences are updated in

registers H1 and H2.

Depending upon the results of comparators C1,C2,C3 and C4

(in ACS section), the new symbols corresponding to the survived

branch are generated by symbol-mapping circuits. The complete

truth-table and logic design of these circuits have been shown in

figure 3.7. Newly generated symbols are parallely loaded to buffer

registers (serial-to-parallel converters)and then serially shifted

to path history registers H1 and H2.
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SYMBOL MAPPING CIRCUIT DESIGN FOR UPPER TRELLIS

STATE 1

COMPARATORS

C1

0

1

X

X

OUTPUT SURVIVED SYMBOL

C2 C3 02 Q1 Q0

X 1 1 1 1

X 1 0 1 1

1 0 0 0 1

0 0 1 0 1

Q0= HIGH

Q1=C3

Q2=NOT(C1) C3 + NOT(C2) NOT(C2)

STATE 2

COMPARATORS OUTPUT SURVIVED SYMBOL

C1 C2 C4 Q2 Q1 Q0

X 1 1 0 0 1

X 0 1 1 0 1

1 X 0 0 1 1

0 X 0 1 1 1

X = Do not care state

NOT = Inverse

Q0., HIGH

QI= NOT C4

Q2=NOT(C2) C4 + NOT(C1) NOT(C2)

Figure 3.7
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3.3.4 OUTPUTTING DECODED WORD

After 8 branches have been processed (which is indicated by

count 111), the path metrics for state one (valid state) of decoders

for the upper and lower trellis are compared and appropriate path

history register content is outputted. This is indicated to the user

by making the output ready line HIGH. The diagram for this part of

the decoder has been shown in figure 3.8. $1 and $2' are path

metric registers of state 1 from decoder1 and decoder2

respectively.

Also, if the path metric value of the final survivor exceeds

some predefined value (determined by acceptable BER), then it can

be detected by a threshold circuit and an indication can be given to

the user whether the decoded code word is unreliable or safely

acceptable. This provision of error detection or reliability

indicator for decoded code word can be included in the output

circuit. Simulation studies showed that the maximum path metric

values of the final survivor for BER 10 -5 and 10 -6 are 8 and 6

respectively.

3.3.5 CONTROL DESIGN

We have 8 clock (recovered from the received symbols) cycles

to (1) initialize the path metric registers, (2) process 8 sections of
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the trellis, and (3) output the decoded word and other required

signals. A modulo-8 counter is used to keep track of the number of

sections of the trellis processed. A separate input-line must be

provided to reset the counter externally, whenever necessary.

During each clock cycle of the received symbol, all the

following operations must be performed and corresponding control

signals must be generated by the control-circuit.

_t93._t: The ND converters makes available the quantized value of X

and Y components of the 8-PSK demodulator output at the address

input-line of ROMs and a start pulse initiates the control circuit.

If count is 000, initialize the state or path metric

registers. (load 0 and 32 in two path metric registers by applying

control signal to parallel enable input of these registers)

Also, make the 'output ready line' LOW and 'output error line' too, if

HIGH, LOW.

,,_t93_._: ROMs read cycle. At the end of this cycle, branch metrics

are available at the output lines of ROMs.

Load branch metric registers R1 to R4. Control signal is

applied to parallel enable input of registers R1 to R4.

Tzt93.__: Delay cycle. (In order to allow sufficient time for entire

ACS operations)
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,_LO._Q: Register exchange cycle in path history section. (control

signal is applied to parallel enable input of buffer registers for

new survived symbol (generated by symbol mapping circuit) and

parallel enable input of path history registers)

_Serial shift of 1st bit of new symbol from buffer register

to path history register.

=_Jg.g_J_ Serial shift of 2nd bit of new symbol from buffer register

to path history register.

_JgJZ.._: Serial shift of 3rd bit of new symbol from buffer register

to path history register.

_: Update the state metric registers. (Control signal is

applied to parallel enable input of path metric registers)

If count is 111, (a) output the decoded code word. (control

signal to parallel enable input of output buffer register) (b) Make

the output ready line HIGH. Also, if final survivor path metric

exceeds some limit (detected by threshold circuit), another output

line should be made HIGH indicating that decoded word should not

be accepted.

Increment the counter (by applying control signal to clock

input of counter) and wait for the next start pulse to process the

next section in the trellis.
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DECODER FOR LOWER TRELLIS

SYMBOL MAPPING CIRCUIT DESIGN FOR LOWER TRELLIS

STATE 1

COMPARATORS OUTPUT SURVIVED SYMBOL

C1 C2 C3 Q2 Q1

Q0

0 X

1 X

X 1

X 0

1 1 1 0

1 0 1 0

0 0 0 0

0 1 0 0

Q0:, LOW

Q1:C3

Q2--NOT(C1) C3 + NOT(C2) NOT(C3)

STATE 2

COMPARATORS

C1 C2

Q0

X 1

X 0

1 X

0 X

0

OUTPUT SURVIVED

C4 Q2 Q1

SYMBOL

1 0 0 0

1 1 0 0

0 0 1 0

0 1 1

Q0= LOW

Q1: NOT C4

Q2:NOT(C2) C4 + NOT(C1) NOT(C2)

Figure 3.9
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The entire circuit for the decoder to process the lower trellis

is exactly the same as the one to process the upper trellis

discussed so far except for the symbol mapping circuit design

which is shown in figure 3.9. These two decoders can share the

same control circuit if built on a single chip.

3.4 SIMULATION RESULTS FOR 4-STATE CODE

The simulation results are shown in figure 3.10(a) and

3.10(b). Note that in case of ideal Viterbi decoder (no quantization

and no floating point to integer conversion of branch metrics, hence

decoder handles floating point arithmetics), the actual coding gain

is 1.5 db over the uncoded QPSK (with grey code indexing) at BER of

10 -5 without bandwidth expansion.

4-bit quantization results in 0.40 db loss whereas 5-bit

quantization results in 0.15-0.20 db loss. Also, for floating point

to integer conversion of branch metric values, the difference in

performance between multiplication factors 4 and 5 (named as

uniform mapping 2 and uniform mapping 1 respectively in the figure

3.10(b)) is 0.3 db. The multiplication factor 5 was found good

enough. The factor 4 results in maximum integer branch metric

equal to 37, whereas the factor 5 results in maximum integer

branch metric equal to 47. Also, note that the difference in
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performance between uniform and non-uniform floating point to

integer mapping is negligibly small.

3.5 CHIP STRUCTURE

A possible chip layout structure for the Viterbi decoder for

4-state code has been shown in figure 3.11. The input and output

lines description are as follows:

IN 1-10: Output from AJD converter (quantized value of

normalized X and Y components of demodulator output), address

input for ROMs.

IN 11: Input line to reset the counter externally whenever

necessary and restart the decoding. Hence, this line provides

external word synchronization.

IN 12: Input line to give a start pulse to the control circuit. Each

time a new symbol is received and digitized by AJD converter, the

latter gives a start pulse to the decoder through this line to

process the next section in the trellis.

IN 13: Input line for high frequency clock pulse for control circuit.

IN 14-15: Power and ground lines.

OUT 16-39: Decoded code word is available on these output lines.
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OUT 40: This output line goes HIGH whenever _a new code word is

available on the output line 12-35.

OUT 41: This line can act as a possible error indicator. It goes

HIGH whenever the path metric value of final survivor exceeds

some pre-defined value.

Complete decoder including ROM look-up table for branch

metric can be built on a single VLSI chip but the chip size will be

very big. Note that the number of pins in the chip can be reduced if

the decoded code word is outputted serially (one symbol at a time).

if the two sub-decoders are integrated on single chip, they share

the same control circuit.

3.6 THE DECODER DESIGN FOR 16-STATE CODE

3.6.1 DESCRIPTION OF THE TRELLIS DIAGRAM

The trellis diagrams of the component codes for this

modulation code has been shown in figure 3.12. The overall trellis

diagram for the modulation code consists of four identical parallel

4-state special kind of trellis sub-diagrams without cross-

connections among them. The trellis sub-diagrams (with

modification for ease of implementation) are shown in figure 3.13.

Each trellis sub-diagram is a special kind of four-section trellis

such that each branch itself is a four-sections, 2-state small
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trellis. The two parallel lines in the diagram represent a 2-state,

4-sections small trellis. Note that the dotted lines correspond to

the invalid branches. At stage 1 and stage 16 of decoding process,

there is only one valid state in each sub-diagram, that is the state1

of first small trellis in each trellis sub-diagram.

The diagram of one such small trellis, which constitutes the

branch of the trellis sub-diagram, is shown in figure 3.14. These

Figure 3.14 Small Trellis

small trelleses, in general, has different branch labels in

different sections in contrast to a normal trellis, where each

section of the trellis has the same branch label. There are four

such small trelleses inherent in each one of the four trellis sub-

diagrams of the modulation code.

Hence, for the entire decoder, we have to have total 16 2-

state decoders one for each small trellis. The design of these

decoders is the same as for 4-state code (discussed before) except

some modifications (to be discussed).
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It is obvious from the trellis sub-diagram that after eight

and twelve sections of the trellis have been processed by the 2-

state decoders, additional comparisons are to be made and

corresponding path metrics and path history registers are to be

updated. After 16 symbols have been processed (that is the

completion of the processing of one code word), the survivor from

each trellis sub-diagram is at state 1 of 2-state decoder for first

small trellis. The final survivor is obtained by comparing these

four survivors. This completes the decoding process.

The circuit design of the decoder to process the first trellis

sub-diagram is discussed and the design of decoders for three other

trellis sub-diagrams will exactly be the same.

3.6.2 ACS CIRCUIT

The ACS circuit for 2-state decoder for a single small trellis

is shown in figure 3.15. M1 to M4 are smaller of the branch metrics

of four pairs of parallel branches in the trellis.

The difference between this circuit and ACS circuit for the

decoder for code1 is (1) additional 5 bits multiplexers MUX1 and

MUX2 (figure 3.15) are required and (2) multiplexers connected to

the inputs of path metric registers are 3 to 1 rather than 2 to 1.

The need of additional multiplexers (MUX1 and MUX2) arises,
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because the small trellis, in general, has d'_ferent branch labels in

different sections. The rnod-16 counter output controls the

selection of appropriate branch metric. Since additional

'comparison and select operation' needs to be performed after each

time eight and twelve sections of the trellis have been processed,

the multiplexers connected to the inputs of path metric registers

have to be 3 to 1 multiplexers. The first input is for initialization

of the path metrics (when count is 0), the second input is to store

the result after additional comparison-select operation (when

count is 7 and 12) and the third input is to update the path metric

after normal ACS operation in each time unit.

Note that 16 .such ACS circuits (one for each 2-state small

decoder) are required for the entire decoder whereas in the case of

4-state decoder for code 1, we require only two such ACS circuits

with less complexity.

In addition, four more 6 bits comparators and multiplexers

per trellis sub-diagram are required for additional comparisons and

updating of path metrics after each time eight and twelve sections

of the trellis have been processed. Hence, note that the hardware

requirement for the decoder for 16-state code is roughly 10 times

larger than that of for the 4-state code.
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3.6.3 PATH HISTORY UPDATING CIRCUIT

The path history updating circuit using register exchange

method for a single 2-state small decoder is shown in figure 3.16.

MUX1 and MUX2 are 3 to 1 48 bits multiplexers. H1 and H2 are

48 bits path history registers for storage of 16 symbols each 3

bits long. Additional path history updating is required after each

time eight and twelve symbols have been processed. Hence, the

survived sequence after additional comparison is connected to the

third input of the multiplexer, Four additional 2 to 1 48 bits

multiplexers per trellis sub-diagram are required to accomplish

the additional path history updating after each time eight and

twelve symbols have been processed.

3.6.4 OUTPUT CIRCUIT

After 16 symbols have been processed, the four survivor path

metrics from the four valid states (one from each trellis sub-

diagram) are compared, and the appropriate path history content is

outputted. The diagram for this part of the decoder is shown in

figure 3.17. The comparison of four path metrics is performed in

two stages by three 6 bits comparators. The comparison results

are used to control a 4 to 1 48 bits mulSplexer, whose input lines

are connected to the outputs of the path history register of state1
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of first small decoder for each Vellis sub-diagram.

multiplexer outputs the final suntived sequence.

ThQ

3.6.5 CONTROL DESIGN

Step1 to step 10 remains the same as given in control design

for code1.

._Jg.9___t!_lf count is 0111 or 1011:

(a) make additional comparisons of path metrics.

(b) Update the path history registers (by applying the

control signal to parallel enable input of path history registers).

(c) Update the path metric registers (by applying the

control signal to parallel enable input of path metric registers).

If count is 1111 :

(a) output the decoded codeword (by applying the control

signal to parallel enable input of output buffer register).

(b) Make the output ready line go HIGH.

Increment the counter and wait for the next start pulse.
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3.7 SIMULATION OF 16-STATE CODE AND SIMULATION

RESULTS

Simulation results for 16-state code have been shown in

figure 3.18. The actual coding gain (at BER 10 "5) for unquantized

Viterbi decoder is 1.3 db (less than 4-state code) over uncoded

QPSK. However, there is a reduction in bandwidth. 5 bits

quantization results in 0.3 o'b loss. Once again, the non-uniform

floating point to integer mapping scheme reduces the branch metric

and path metric range without sacrificing coding gain.
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CHAPTER 4

MULTI-STAGE DECODING OF MULTI-LEVEL CODE AND

PERFORMANCE EVALUATION

4.1 INTRODUCTION

Since the performance of a block modulation code is largely

determined by its minimum squared Euclidean distance, the

optimum decoding strategy for AWGN channel (assuming equal a

priori probabilities) is soft decision maximum likelihood decoding

based on the squared Euclidean distance. This requires computing

the squared Euclidean distances of the received signal sequence

from each of the 2T-.,kicodewords in signal space and selecting the

code word which has minimum squared Euclidean distance. If the

value of T.,ki is large, this method becomes prohibitively complex.

If each of the component codes has trellis structure, the

modulation code also has trellis structure. The trellis diagram of

the modulation code is the direct product of the trellis diagrams of

its component codes. Because of the multiplicative nature, the

trellis diagram of the modulation code can be quite complicated

with large number of states and large number of parallel branches

even if the component codes have relatively simple trellis

structure. Hence, even if a modulation code has trellis structure, it

might not be practical to implement the Viterbi decoder for it.
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This is true, in particular, for the modulation code with large

minimum squared Euclidean distance and long length.

Hence, it is obvious that for practical purposes, it is

necessary to devise a sub-optimum but practical decoding

algorithm. The multi-stage decoding is very attractive solution to

this problem.

The basic idea behind the multi-stage decoding of multi-level

modulation code is as follows. The multi-stage decoding of multi-

level block modulation code is based on their multi-level structure.

Since the multi-level block modulation code consists of m

component codes, we decode each of these component codes

separately in m stages. The most powerful component code is

decoded first and the least powerful component code is decoded

last. The decoded information (or code word) in each stage is

assumed to be correct and is stored in a buffer to be used by the

later stages. The process continues stage by stage for m stages

until all the information bits have been recovered.

At each stage of decoding, we can perform soft-decision

maximum likelihood decoding or other sub-optimum decoding (e.g.

algebraic decoding) depending on the component code being decoded.

In other words, at each decoding level, we may take advantage of

the structure of the component code. If each component code has

trellis structure with reasonable number of states and parallel

branches, we can decode each component code using a soft-decision
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Viterb! decoder. If component codes have complex tiniest; and

soft-decision Viterbi decoding is not practical, then we may use

hard-decision algebraic decoding.

4.2 MULTI-STAGE DECODING ALGORITHM FOR MULTI-LEVEL

BLOCK MODULATION CODE

We illustrate the multi-stage decoding algorithm of basic

multi-level modulation code by considering an example of 3-levels

8-PSK modulation code. It can be easily generalized for higher

levels and other modulation codes. The basic idea remains the

same.

Since basic 3-levels 8-PSK modulation code consists of 3

component codes, there are kthree stages of decoding. The

schematic diagram for multi-stage decoding of 3-level 8-PSK block

modulation code is shown in figure 4.1 where r is the received

vector, and kl to k3 are decoded message bits in the 1st, 2nd and

3rd stages respectively. Note that the decoded codeword in a stage

is passed to all other later stages. The decoding process begins

with the first level component and ends at the third level (last

level) component code. One important observation that can be made

from this diagram is that the multi-stage decoding creates

pipelined parallelism in the decoding process. This is very

desirable structure for high speed system.
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Fig. 4.1 multi-stage decoding of 3-level code

4.2.1 SOFT-DECISION MULTI-STAGE DECODING

Decoding in each stage is done by a soft-decision maximum

likelihood decoder based on the squared Euclidean distance. Hence,

decoding for each component code is optimum. Assume that the
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channel is an AWGN dumnel. Let r = (rl,r2, ........ ,rn) be the

received sequence at the output of the 8-PSK demodulator, where q

= (xi, Yi) is a point in the two dimensional Euclidean plane.

First decoding stage

Let a = ( al ,a2, ............ ,an ) be a binary codeword in the

component code C1.

Compute the squared Euclidean distances between ri and the signal

points in Q(ai). Recall that Q(ai) represents a QPSK signal set

(shown in figure 4.2) which is obtained by partition of 8-PSK signal

set with prefix ai. Since there are four points in Q(ai), there are

four such distances. Compare these four distances and find the

minimum one. Let d[ri, Q(ai)] be the minimum squared Euclidean

distance between ri and the points in Q(ai). For every codeword a

in C1, compute the distance,

n

d(r, a) -_. d[ri, O(ai)]
i=1

Note that the total number of such computations required is 2 kl. If

C1 has a simple trellis structure, this computation will be greatly

reduced. Decode r into a* for which d(r,a*) is the minimum. The

decoded codeword a* is stored in a buffer to be used in the second

and third stages of decoding.



Second decoding etage

The decoded codeword a* of the first stage is passed to the second

stage. Let b = ( bl ,b2, ............ ,bn ) be a binary codeword in

component code C2.

Compute the squared Euclidean distances between ri and the points

in Q(ai* bi). Recall that Q(ai" bi) represents a BPSK signal set

which is obtained by partition of 8-PSK signal set with prefix

ai*bi. Since there are two points in Q(ai ° bi), there are two such

distances. Compare these two distances and find the smaller one.

Let d[ri, Q(ai" bi)] be the minimum squared Euclidean distance

For every codeword b in C2,between ri and the points in Q(ai ° bi).

compute

d(r, a'b) -_ d[ri. Q(ai*bi)]
i.1

Decode r into codeword b" for which d(r, a'b °) is the minimum.

The dedoded codeword is stored in a buffer to be used in the third

stage.

Third decoding stage

The decoded codewords at the first and second stages, a* and b*

are available to the third stage. Let d[ri,Q(ai'bi*ci)] denotes the

squared Euclidean distance between received symbol ri and the
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point In 8-PSK signal set with labeling al'bf'ci. For every

codeword ¢-(Cl ,c2, ............ ,Cn ) in C3, compute

d(r, I*b'c) -_ d[ri, O(ai*bi*ci)]
i'1

- _ d[ri,
i"1

14(ai*bi*ci) ]

Decode r into codeword c* for which d(r. a*b'c*) is the minimum.

This completes the decoding, i_(a *o b** c*) forms the decoded 8-

PSK signal sequence

The soft-decision multi-stage decoding algorithm can be

summarized as follows. The squared Euclidean distances (metrics)

of received symbol from all 8-PSK signal points are computed and

are made available to the soft-decision maximum likelihood

decoders for each component codes. The decoding at each stage is

done in three steps: (1) selection of proper signal set (with proper

labeling) based on received symbol and the decoded informations in

the previous stages, (2) finding the signal with minimum distance

in the selected set, and (3) computation of appropriate metric for

decision. If each component code has a trellis structure, then the

Viterbi decoding algorithm can be applied to decode each component

code.

The soft decision multi-stage decoding is not optimum even

though the decoding of each component code is optimum. It is sub-

optimum. The difference in performance between the optimum

72



decoding and the sub-optimum soft-declslon multi-stage decoding

has been found very small, a fraction of oi) in coding gain, for many

multi-level modulation codes.

4.2.2 HARD-DECISION MULTI-STAGE DECODING

In case component codes do not have simple trellis structure,

it is hard to perform soft-decision maximum likelihood decoding

for each component code based on Euclidean distance. Also, in some

cases soft-decision decoding can be too expensive, in general, the

component codes chosen to construct the multi-level block

modulation codes are well known binary block codes with well

established decoding algorithm based on hard decision of the

demodulator. Hence, the main idea behind the hard decision multi-

stage decoding of multi-level block modulation code is to further

simplify the decoding of each component code by employing known

algebraic decoding algorithms for these codes. Also, the hard-

decision multi-stage decoding provides more flexibility in the

construction of multi-level modulation code in the sense that we

can employ any class of binary block codes as component codes.

The decoding at each stage is performed in two steps. The

first step is hard demodulation or bit decision of each symbol

based on decoded codewords in previous stages. In the second step,
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the hard demodulated binary sequence is given to a binary block

code decoder.

Since at first stage of decoding, each 8-PSK symbol is hard

demodulated independently without the help of any other

information, the minimum squared Euclidean distance between the

signal sequences, which is the major performance criterion of a

modulation code, does not get a chance to play any role, a

significant coding gain can be expected to be lost in comparison

with the soft-decision multi-stage decoding. Note that while

making bit-decision at first stage, no other information is

available to the detector. Rather, we have a worse situation.

Signal points are crowded and bit-decision is to be made by

independent hard demodulation of each symbol without the help of

any other information. On the other hand, since the decoded

information in the first stage is used for decoding in later stages,

we must make sure that decoding in first stage is correct. Hence,

the decoding in the first stage is entirely based on Hamming

distance of first level component code and this component code

should be chosen to have as high Hamming distance as possible.

The decoding algorithm is as follows. Let r - (rl,r2, .......

.,rn) be the received sequence at the output of the demodulator,

where ri is a point in two dimensional Euclidean plane denoted by

R2.
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First decoding stage

Divide R2 plane into two decision regions, R0 2 and R12 where

R0 2 contains the signal points whose labels have 0 as the prefix

and R12 contains the signal points whose labels have 1 as the

prefix. For 3-level 8-PSK modulation code, the division of R2 is

shown in figure 4.3.

Hard decision: For 1 < i _; n, make decision on the first label bit ai

based on the received symbol ri. If ri is a point in R0 2, set the

output of the first stage detector ai=0. If ri is a point in R12 set

the output of the first stage detector ai-1. Essentially, each ri is

demodulated independently into one of the 8 8-PSK symbols and ai

is set equal to the first label of the demodulated symbol.

Decoding C1: After the first label bit decisions have been made

for n received symbols, the binary vector a - ( al,a2, ...........

.,an ) at the output of the detector is passed to the decoder for

component code C1. The decoder C1 operates on vector a and puts

out the decoded codeword a'. The decoding may be maximum

likelihood decoding or algebraic decoding. The schematic diagram

of first-stage decoding is shown in figure 4.4.
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Figure 4.4 Schematic diagram of 1st stage hard decision decoding

Let

a*= ( al*,a2*, ............ ,an* )

be the decoded codeword in the first decoding stage.

Second decoding stage

The decoded codeword, a*, from the first decoding stage is

passed to the second stage. For ai*= 0, divide the R2-plane into

two decision regions, R002 and R012, where RO0 2 contains those

signal points whose labels have 00 as the prefix and R012 contains

those signal points whose labels have 01 as the prefix. For ai*-l,

divide the R2-plane into two decision regions, R102 and Rll 2,

where R10 2 contains those signal points whose labels have 10 as

the prefix and R112 contains those signal points whose labels have

11 as the prefix.

For 3-level 8-PSK modulation code, the division of

is shown in figure 4.5.

R2 plane

Hard decision: Depending on the value of ai*, the proper QPSK set

either {0,2,4,6} or {1,3,5,7} is selected. Decision on the second
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label bit bl is made depending upon which one of lhe two posslble

decision regions for the selected QPSK signal set contains the

received sequence ri. For I < i _; n,

If a*i-O and ri is in the region RO0 2,

second-stage detector,

then set the output of the

bi-O.

If a*i-O and ri is in the region R012 then set the output of the

second-stage detector,

bi=l.

If a'i-1 and ri is in the region R1 0 2, then set the output of the

second-stage detector,

bi=O.

If a*i-1 and ri is in the region R112, then set the output of the

second-stage detector,

bi=l.

Decoding C2: The sequence b = ( bl ,b2, ............ ,bn ) at the

output of the detector is passed to the decoder for C2, which

operates on b and puts out the decoded codeword b*. The schematic

diagram of the second stage decoder is shown in figure 4.6.
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decoding

Let

b* = ( bl",b2", ............ ,bn" )

be the decoded codeword in the second stage of the decoding .

Third decoding stage

The decoded codewords, a* and b', at the first and second

decoding stages is passed to the third stage. Based on ai*bi*, the

R 2 plane is divided into two decision regions, Rai*bi*O 2 and

Rai*bi.1 2 where Rai*bi-02 contains the 8-PSK signal points with

ai*bi*0 as label and Rai*bi.12 contains the 8-PSK signal points

with ai*bi*l as label. For 3-level 8-PSK modulation code, the

division of R2 plane is shown in figure 4.7.
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Hard declalon: The dibit ai'bi" is used to select the proper 8PSK

signal set. There are four such seL The decision on the third label

bit ci is made depending upon which one of the two poss_le

decision regions of the selected BPSK set contains the received

sequence ri. "l:he decision is made as follows. For given ai'bi', if

ri is a point in Rai°bi.O 2, then set the output of the third stage

detector,

ci = 0

otherwise, set

ci = 1.

Decoding C3" The binary vector c = (Cl ,c2, ............ ,Cn ) at

the output of the detector is passed to the binary code decoder for

code C3 which puts out the decoded word ¢*. The schematic

diagram of the third-stage decoder is shown in figure 4.8.

Let

c* = ( c1",c2", ............ ,On" )

be the decoded codeword in the third stage of the decoding. This

completes the decoding process, a*, b* and c* forms the decoded

set.
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Decoder for code C3

Fig. 4.8 schematic diagram of the 3rd-stage hard-decision decoder

4.3 PERFORMANCE EVALUATION BY COMPUTER SIMULATION

Multi-stage decoding does reduce the decoding complexity

drastically, but it is sub-optimum. The probability of correct

decoding of the code is given by

Pc = Pc1 • Pc21cl • Pc31c2,cl

where Pc1 is the probability of correctly decoding the first code,

Pc21cl is the probability of correctly decoding the second code

given that the first code was correctly decoded, and Pc31c2,cl is the

probability of correctly decoding the third code given that the first

two codes were correctly decoded.
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One source of potential loss is easily seen. If the decoding at

a certain stage b not correct, it may lead to decoding error in later

stages. In other words, multi-stage decoding may suffer from

error propagation.

The performance of the multi-stage decoding has been

evaluated by computer simulation for codes with different

minimum squared Euclidean distances and different code lengths

for both soft and hard decision decoding. The following codes were

chosen for simulation.

Code1

This is a 3-level 8-PSK modulation code of length -16,

minimum squared Euclidean distance D[C] = 4. The code is given by

C = RM4,1 *P16*V16

The first component code C1 = RM4,1 has a 4-section 8-state

trellis, the second component code C2 = P16 has a 16-sections 2-

state trellis and the third component code C3 = V16 has a 16-

sections 1-state trellis. The modulation code C has a 16-state

trellis with complex inter-connection structure (discussed in

chapter 3).

The error-performance of the code with single-stage soft-

decision maximum likelihood decoding (optimum decoding) and

multi-stage soft-decision maximum likelihood decoding are shown
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in r_ure 4.9. Note that the difference In performance between

optimum decoding and suboptimum multi-stage decoding is 0.15 clb

at BER 10 "5. Furthermore, this difference becomes even smaller

at higher SNR. Hence, soft-decision multi-stage decoding for this

code provides great complexity advantage without any significant

loss in coding gain. For mufti-stage decoding of this code, three

simple Viterbi decoders are required, one with 8-states (or four 2-

states decoders), second one with 2-state and third one with just

l-state. Recall that optimum Viterbi decoder for this modulation

code requires sixteen 2-state decoders plus some additional

circuits (designed discussed in chapter 3). On using multi-stage

decoding, we need total five 2-state and single l-state decoders.

The three binary component codes C1, C2 and C3 are as

follows: (1) C1= P16' is (16,1) repeatition code which consists of

all-one and all-zero 16-tuples; (2) C2=RM4,2 is second order Reed-

Muller code of length 16 ((16,11) code); (3) C3=P16 is the binary

(16,15) code with all the even weight 16 tuples. The basic 3-level

8-PSK modulation code C of length 16 constructed by these

component codes is given by

C = P16' * RM4,2 * P16

The code has minimum squared Euclidean distance D[C]=8,

dimension K=27 and effective rate R[C]=27/32. The first
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component code Cl = P16'has a 16-sectkm 2-state trellis, the

second component code C2 = RM4.2 has a 4-sections 8-state trellis

and the third component code C3 - V16 has a 16-sections 2-state

trellis. Hence, the modulation code C has a 32-states trellis.

The error-performance of the code with single-stage soft-

decision maximum likelihood decoding (optimum decoding) and

multi-stage soft-decision maximum likelihood decoding are shown

in figure 4.10. Note that the difference in performance between

optimum decoding and suboptimum multi-stage decoding is 0.30 db

at BER 10 -5. Once again this difference becomes much smaller at

higher SNR.

This code was also simulated for hard-decision multi-stage

decoding with (1) maximum likelihood decoding for all the three

component codes, (2) maximum likelihood decoding for C1 and C3

and majority logic decoding for C2 (RM4,2). The error performance

is shown in figure 4.11. The hard decision multi-stage decoding

(MSD) with all the code decoded with maximum likelihood decoder

results in loss of 1.6 db over the optimum decoding at BER 10 -5

(still provides 2.5 db coding gain over the uncoded QPSK) whereas

the hard decision MSD with the second component code (RM4,2

code) decoded with majority logic decoding results in loss of 2.4 db

over the optimum decoding at BER 10-5 (still provides 1.7 db coding

gain over the uncoded QPSK). The error-performance curve in figure

4.12 shows that this code, even with hard-decision MSD and
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majority-logic decoding for the second code. has bett_ error

performance than (31_-_,1) BCH code with the same rate.

code3:

This code was constructed using following components codes:

(1) C1- RM6,1 (2) C2= RM6,3 (3) C3= RM6,4, where RMm,r denotes

the r-th order Reed-Muller code of length 2 m and minimum

Hamming distance equal to 2m-r. The basic muffi-level modulation

code C constructed by these component codes is given by

C = RM6,1 * RM6,3 * RM6,4

The code has minimum squared Euclidean distance D[C]=16,

length--64, dimension K-106 and effective rate R[C]-106/128. The

first component code Cl = RM6,1 has a 4-section 32-state trellis,

the second component code C2 = RM6,3 has a 4-sections 1024-state

trellis and the third component code C3 = RM6,4 has a 4-sections

32-state trellis and each transition between two states consists

of 21 1 number of parallel branches !

Hence, it is obvious that maximum likelihood decoding of this

code is not practical even with hard-decision multi-stage decoding.

We use hard-decision multi-stage majority-logic decoding for each

component code. Each component code is decoded by a majority-

logic decoder. The error performance of this code is shown in

figure 4.13(a). Note that the coding gain is 2.5 db over the uncoded

QPSK at BER of 10-5.
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This code was also simulated for soft-derision maximum

likelihood decoding at first stage and hard decision majority logic

decoding at second and third stages. The error performance with

this decoding scheme is shown in figure 4.13(b). Note that using

this scheme improves the performance by 0.50"o at BER of 10-5.
6

Thus, hard-decision multi-stage decoding further reduces the

decoding complexity of the modulation codes while stills maintains

reasonable coding gain over the uncoded system.

4.4 CONSTRUCTION OF MULTI-LEVEL COOES USING BCH

CODES AS COMPONENT CODES AND HARD DECISION MSD

Some basic multi-level codes employing the multi-level

construction method (discussed in chapter 1) were constructed

using primitive BCH codes as component codes and their

performance have been evaluated by computer simulation for hard-

decision multi-stage decoding.'

Let BCH(n,k,t) denotes a primitive BCH code of length n, where

k= number of message bits and t- designed error correcting

capability of the code. The designed minimum Hamming distance a

satisfies the following bound,

0 > 2t+1
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Each component code is decoded by classical Berlekamp decoding

method for BCH codes.

The codes constructed are given in the table 4.1
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Code

Code1

Code2

Code3

Code4

Code5

Code6

Table 4.1 Multi-level codes using BCH, codes
n m • • L

Component code Dimension Length D[C] R[C] Coding gain

C1 * C2 * C3

BCH(127,29,21)

BCH(127,106,3)

BCH(127,120,1)

BCH(127,36,15)

BCH(127,106,3)

BCH(127,120,1)

BCH(127,36,15)

BCH(127,106,3)

BCH(127,113,2)

BCH(127,50,13)

BCH(127,99,4)

BCH(127,106,3)

BCH(255,45,43)

BCH(255,223,4)

BCH(255,247,1)

K

255

262

255

255

515

523

i

127

127

127

127

255

255

12

12

14

15

12

12

1.003

1.030

1.003

1.003

1.009

1.025

(BE.  o-e)

2.60 db

1.85 db

1.85 db

1.35 do

3.15db

3.10db

BCH(255,45,43)

BCH(255,231,4)

BCH(255,247,1)
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CHAPTER 5

CONCLUSIONS

We have seen that non-uniform floating point to integer

mapping of branch metric values reduces the branch and path

metrics range for Viterbi decoder for modulation codes with

negligible degradation in performance. Other non-uniform mapping

can be designed to further reduce the metric range by dividing the

entire floating point branch metric values into more than two

groups. These schemes can be evaluated by computer simulation.

Note that these schemes will work to reduce the hardware

complexity of Viterbi decoder for TCM codes as well.

The throughput of Viterbi decoder for 4-state code can be

improved by optimizing the path history circuit and control design.

Attempts can be made to reduce the number of steps presented in

the design.

The design of Viterbi decoder for 16-state code can be

simplified if we use a 32-state 16-section trellis diagram instead

of 8-state 4-section trellis diagram for the first level component

code. In that case, total 32 2-state simple Viterbi decoders will

be required to perform the decoding in parallel. Hardware

requirement is increased, but better decoding throughput can be

achieved. This scheme can be given the name 'multi-decoder

decoding' (MDD). MDD can be used for any 3-level 8-PSK modulation
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code for which (1) high decoding throughput is required. (2) the

trellis diagrams for the second and O_d level component codes am

relatively simple and (3) The number of codswords in the first

level component code is small. The idea is to combine the trelleses

of second and third component codes and then combine the resulting

trellis with each codeword in the first component code. If there

are n number of codewords in the first component code, then

overall trellis diagram for the modulation code will consist of n

number of identical trelleses of low complexity without cross

connections among them. Each of these small trelleses can be

processed in parallel by a separate V'derbi decoder of low

complexity. Since these small decoders are identical, they can be

built easily using VLSI technology. Also, note that for MDD, the

first level component code need not have trellis structure.

Soft-decision multi-stage decoding reduces the hardware

complexity drastically and it is suboplJmum. The difference in

performance between overall optimum decoding of modulation code

and soft-decision MSD is very small, a fraction of db in coding gain.

Furthermore, this difference becomes even smaller at higher SNR.

Hence, the soft-decision MSD offers very good trade-off between

performance and decoding complexity. Also, the multi-stage

decoding creates pipelined parallelism in decoding process, which

is desirable for high speed systems. For multi-stage decoding of

multi-level code, it might be a good idea to construct the multi-

level codes with
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@1dl • _icli,

where 2 < i _; I and I is the number of levels.

The performance of multi-level modulation code for optimum

and suboptimum decoding is determined mainly by the minimum

squared Euclidean distance of the code. Also, if the two multi-

level code has the same minimum squared Euclidean distance, the

one with the shorter length is better than the other one as far as

error performance for optimum and suboptimum decoding is

concerned.

For hard-decision MSD, it is the minimum Hamming distance

of the first level component code and not the minimum squared

Euclidean distance of the modulation code, which determines the

error performance. Hence, if the hard-decision MSD is to be

performed, the first component code must be chosen to have as high

Hamming distance as possible to achieve reasonable coding gain

over uncoded system. Also, long and powerful codes should be used

as component codes.

If the soft-decision maximum likelihood decoding is

performed at the first-stage (this is possible, since the first stage

has the most powerful code which has, in general, trellis diagram

of reasonable complexity) and hard-decision decoding at other

stages, then most of the loss (1.5-2.0 db) resulting from the hard-

decision decoding at all the stages, can be recovered. This could be
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another attractive and practical scheme for decoding of multi-

level modulation code.

Finally, the advantages of multi-level codes with multi-stage

decoding over trellis codes are as follows. Multi-level codes

provide a flexible choice of the trade-off between coding gain,

decoding complexity and decoding delay. The decoding complexity

of trellis codes increase twice as the coding gain increases 0.4 db

by optimum Viterbi decoding algorithm [22]. Multi-stage decoding

algorithm for multi-level codes can achieve the designed distance

with relatively small decoding complexity. Moreover, unlike trellis

codes, good multi-level codes can be constructed by using

previously known codes and proper mapping technique.
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